3.265 \(\int \frac{x^3 \sin ^{-1}(a x)^2}{\sqrt{1-a^2 x^2}} \, dx\)

Optimal. Leaf size=126 \[ -\frac{2 \left (1-a^2 x^2\right )^{3/2}}{27 a^4}+\frac{14 \sqrt{1-a^2 x^2}}{9 a^4}-\frac{x^2 \sqrt{1-a^2 x^2} \sin ^{-1}(a x)^2}{3 a^2}-\frac{2 \sqrt{1-a^2 x^2} \sin ^{-1}(a x)^2}{3 a^4}+\frac{4 x \sin ^{-1}(a x)}{3 a^3}+\frac{2 x^3 \sin ^{-1}(a x)}{9 a} \]

[Out]

(14*Sqrt[1 - a^2*x^2])/(9*a^4) - (2*(1 - a^2*x^2)^(3/2))/(27*a^4) + (4*x*ArcSin[a*x])/(3*a^3) + (2*x^3*ArcSin[
a*x])/(9*a) - (2*Sqrt[1 - a^2*x^2]*ArcSin[a*x]^2)/(3*a^4) - (x^2*Sqrt[1 - a^2*x^2]*ArcSin[a*x]^2)/(3*a^2)

________________________________________________________________________________________

Rubi [A]  time = 0.202162, antiderivative size = 126, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 7, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.292, Rules used = {4707, 4677, 4619, 261, 4627, 266, 43} \[ -\frac{2 \left (1-a^2 x^2\right )^{3/2}}{27 a^4}+\frac{14 \sqrt{1-a^2 x^2}}{9 a^4}-\frac{x^2 \sqrt{1-a^2 x^2} \sin ^{-1}(a x)^2}{3 a^2}-\frac{2 \sqrt{1-a^2 x^2} \sin ^{-1}(a x)^2}{3 a^4}+\frac{4 x \sin ^{-1}(a x)}{3 a^3}+\frac{2 x^3 \sin ^{-1}(a x)}{9 a} \]

Antiderivative was successfully verified.

[In]

Int[(x^3*ArcSin[a*x]^2)/Sqrt[1 - a^2*x^2],x]

[Out]

(14*Sqrt[1 - a^2*x^2])/(9*a^4) - (2*(1 - a^2*x^2)^(3/2))/(27*a^4) + (4*x*ArcSin[a*x])/(3*a^3) + (2*x^3*ArcSin[
a*x])/(9*a) - (2*Sqrt[1 - a^2*x^2]*ArcSin[a*x]^2)/(3*a^4) - (x^2*Sqrt[1 - a^2*x^2]*ArcSin[a*x]^2)/(3*a^2)

Rule 4707

Int[(((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[
(f*(f*x)^(m - 1)*Sqrt[d + e*x^2]*(a + b*ArcSin[c*x])^n)/(e*m), x] + (Dist[(f^2*(m - 1))/(c^2*m), Int[((f*x)^(m
 - 2)*(a + b*ArcSin[c*x])^n)/Sqrt[d + e*x^2], x], x] + Dist[(b*f*n*Sqrt[1 - c^2*x^2])/(c*m*Sqrt[d + e*x^2]), I
nt[(f*x)^(m - 1)*(a + b*ArcSin[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[c^2*d + e, 0] &&
GtQ[n, 0] && GtQ[m, 1] && IntegerQ[m]

Rule 4677

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*(x_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[((d + e*x^2)^
(p + 1)*(a + b*ArcSin[c*x])^n)/(2*e*(p + 1)), x] + Dist[(b*n*d^IntPart[p]*(d + e*x^2)^FracPart[p])/(2*c*(p + 1
)*(1 - c^2*x^2)^FracPart[p]), Int[(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcSin[c*x])^(n - 1), x], x] /; FreeQ[{a, b,
c, d, e, p}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && NeQ[p, -1]

Rule 4619

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.), x_Symbol] :> Simp[x*(a + b*ArcSin[c*x])^n, x] - Dist[b*c*n, Int[
(x*(a + b*ArcSin[c*x])^(n - 1))/Sqrt[1 - c^2*x^2], x], x] /; FreeQ[{a, b, c}, x] && GtQ[n, 0]

Rule 261

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a + b*x^n)^(p + 1)/(b*n*(p + 1)), x] /; FreeQ
[{a, b, m, n, p}, x] && EqQ[m, n - 1] && NeQ[p, -1]

Rule 4627

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*ArcSi
n[c*x])^n)/(d*(m + 1)), x] - Dist[(b*c*n)/(d*(m + 1)), Int[((d*x)^(m + 1)*(a + b*ArcSin[c*x])^(n - 1))/Sqrt[1
- c^2*x^2], x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && NeQ[m, -1]

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rubi steps

\begin{align*} \int \frac{x^3 \sin ^{-1}(a x)^2}{\sqrt{1-a^2 x^2}} \, dx &=-\frac{x^2 \sqrt{1-a^2 x^2} \sin ^{-1}(a x)^2}{3 a^2}+\frac{2 \int \frac{x \sin ^{-1}(a x)^2}{\sqrt{1-a^2 x^2}} \, dx}{3 a^2}+\frac{2 \int x^2 \sin ^{-1}(a x) \, dx}{3 a}\\ &=\frac{2 x^3 \sin ^{-1}(a x)}{9 a}-\frac{2 \sqrt{1-a^2 x^2} \sin ^{-1}(a x)^2}{3 a^4}-\frac{x^2 \sqrt{1-a^2 x^2} \sin ^{-1}(a x)^2}{3 a^2}-\frac{2}{9} \int \frac{x^3}{\sqrt{1-a^2 x^2}} \, dx+\frac{4 \int \sin ^{-1}(a x) \, dx}{3 a^3}\\ &=\frac{4 x \sin ^{-1}(a x)}{3 a^3}+\frac{2 x^3 \sin ^{-1}(a x)}{9 a}-\frac{2 \sqrt{1-a^2 x^2} \sin ^{-1}(a x)^2}{3 a^4}-\frac{x^2 \sqrt{1-a^2 x^2} \sin ^{-1}(a x)^2}{3 a^2}-\frac{1}{9} \operatorname{Subst}\left (\int \frac{x}{\sqrt{1-a^2 x}} \, dx,x,x^2\right )-\frac{4 \int \frac{x}{\sqrt{1-a^2 x^2}} \, dx}{3 a^2}\\ &=\frac{4 \sqrt{1-a^2 x^2}}{3 a^4}+\frac{4 x \sin ^{-1}(a x)}{3 a^3}+\frac{2 x^3 \sin ^{-1}(a x)}{9 a}-\frac{2 \sqrt{1-a^2 x^2} \sin ^{-1}(a x)^2}{3 a^4}-\frac{x^2 \sqrt{1-a^2 x^2} \sin ^{-1}(a x)^2}{3 a^2}-\frac{1}{9} \operatorname{Subst}\left (\int \left (\frac{1}{a^2 \sqrt{1-a^2 x}}-\frac{\sqrt{1-a^2 x}}{a^2}\right ) \, dx,x,x^2\right )\\ &=\frac{14 \sqrt{1-a^2 x^2}}{9 a^4}-\frac{2 \left (1-a^2 x^2\right )^{3/2}}{27 a^4}+\frac{4 x \sin ^{-1}(a x)}{3 a^3}+\frac{2 x^3 \sin ^{-1}(a x)}{9 a}-\frac{2 \sqrt{1-a^2 x^2} \sin ^{-1}(a x)^2}{3 a^4}-\frac{x^2 \sqrt{1-a^2 x^2} \sin ^{-1}(a x)^2}{3 a^2}\\ \end{align*}

Mathematica [A]  time = 0.0453418, size = 81, normalized size = 0.64 \[ \frac{2 \sqrt{1-a^2 x^2} \left (a^2 x^2+20\right )-9 \sqrt{1-a^2 x^2} \left (a^2 x^2+2\right ) \sin ^{-1}(a x)^2+6 a x \left (a^2 x^2+6\right ) \sin ^{-1}(a x)}{27 a^4} \]

Antiderivative was successfully verified.

[In]

Integrate[(x^3*ArcSin[a*x]^2)/Sqrt[1 - a^2*x^2],x]

[Out]

(2*Sqrt[1 - a^2*x^2]*(20 + a^2*x^2) + 6*a*x*(6 + a^2*x^2)*ArcSin[a*x] - 9*Sqrt[1 - a^2*x^2]*(2 + a^2*x^2)*ArcS
in[a*x]^2)/(27*a^4)

________________________________________________________________________________________

Maple [A]  time = 0.055, size = 127, normalized size = 1. \begin{align*} -{\frac{1}{27\,{a}^{4} \left ({a}^{2}{x}^{2}-1 \right ) } \left ( 9\,{a}^{4}{x}^{4} \left ( \arcsin \left ( ax \right ) \right ) ^{2}+9\, \left ( \arcsin \left ( ax \right ) \right ) ^{2}{x}^{2}{a}^{2}+6\,\arcsin \left ( ax \right ) \sqrt{-{a}^{2}{x}^{2}+1}{x}^{3}{a}^{3}-2\,{a}^{4}{x}^{4}-38\,{a}^{2}{x}^{2}-18\, \left ( \arcsin \left ( ax \right ) \right ) ^{2}+36\,\arcsin \left ( ax \right ) \sqrt{-{a}^{2}{x}^{2}+1}xa+40 \right ) \sqrt{-{a}^{2}{x}^{2}+1}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3*arcsin(a*x)^2/(-a^2*x^2+1)^(1/2),x)

[Out]

-1/27/a^4*(9*a^4*x^4*arcsin(a*x)^2+9*arcsin(a*x)^2*x^2*a^2+6*arcsin(a*x)*(-a^2*x^2+1)^(1/2)*x^3*a^3-2*a^4*x^4-
38*a^2*x^2-18*arcsin(a*x)^2+36*arcsin(a*x)*(-a^2*x^2+1)^(1/2)*x*a+40)*(-a^2*x^2+1)^(1/2)/(a^2*x^2-1)

________________________________________________________________________________________

Maxima [A]  time = 1.551, size = 142, normalized size = 1.13 \begin{align*} -\frac{1}{3} \,{\left (\frac{\sqrt{-a^{2} x^{2} + 1} x^{2}}{a^{2}} + \frac{2 \, \sqrt{-a^{2} x^{2} + 1}}{a^{4}}\right )} \arcsin \left (a x\right )^{2} + \frac{2 \,{\left (\sqrt{-a^{2} x^{2} + 1} x^{2} + \frac{20 \, \sqrt{-a^{2} x^{2} + 1}}{a^{2}}\right )}}{27 \, a^{2}} + \frac{2 \,{\left (a^{2} x^{3} + 6 \, x\right )} \arcsin \left (a x\right )}{9 \, a^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*arcsin(a*x)^2/(-a^2*x^2+1)^(1/2),x, algorithm="maxima")

[Out]

-1/3*(sqrt(-a^2*x^2 + 1)*x^2/a^2 + 2*sqrt(-a^2*x^2 + 1)/a^4)*arcsin(a*x)^2 + 2/27*(sqrt(-a^2*x^2 + 1)*x^2 + 20
*sqrt(-a^2*x^2 + 1)/a^2)/a^2 + 2/9*(a^2*x^3 + 6*x)*arcsin(a*x)/a^3

________________________________________________________________________________________

Fricas [A]  time = 1.78503, size = 154, normalized size = 1.22 \begin{align*} \frac{6 \,{\left (a^{3} x^{3} + 6 \, a x\right )} \arcsin \left (a x\right ) +{\left (2 \, a^{2} x^{2} - 9 \,{\left (a^{2} x^{2} + 2\right )} \arcsin \left (a x\right )^{2} + 40\right )} \sqrt{-a^{2} x^{2} + 1}}{27 \, a^{4}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*arcsin(a*x)^2/(-a^2*x^2+1)^(1/2),x, algorithm="fricas")

[Out]

1/27*(6*(a^3*x^3 + 6*a*x)*arcsin(a*x) + (2*a^2*x^2 - 9*(a^2*x^2 + 2)*arcsin(a*x)^2 + 40)*sqrt(-a^2*x^2 + 1))/a
^4

________________________________________________________________________________________

Sympy [A]  time = 2.70067, size = 121, normalized size = 0.96 \begin{align*} \begin{cases} \frac{2 x^{3} \operatorname{asin}{\left (a x \right )}}{9 a} - \frac{x^{2} \sqrt{- a^{2} x^{2} + 1} \operatorname{asin}^{2}{\left (a x \right )}}{3 a^{2}} + \frac{2 x^{2} \sqrt{- a^{2} x^{2} + 1}}{27 a^{2}} + \frac{4 x \operatorname{asin}{\left (a x \right )}}{3 a^{3}} - \frac{2 \sqrt{- a^{2} x^{2} + 1} \operatorname{asin}^{2}{\left (a x \right )}}{3 a^{4}} + \frac{40 \sqrt{- a^{2} x^{2} + 1}}{27 a^{4}} & \text{for}\: a \neq 0 \\0 & \text{otherwise} \end{cases} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3*asin(a*x)**2/(-a**2*x**2+1)**(1/2),x)

[Out]

Piecewise((2*x**3*asin(a*x)/(9*a) - x**2*sqrt(-a**2*x**2 + 1)*asin(a*x)**2/(3*a**2) + 2*x**2*sqrt(-a**2*x**2 +
 1)/(27*a**2) + 4*x*asin(a*x)/(3*a**3) - 2*sqrt(-a**2*x**2 + 1)*asin(a*x)**2/(3*a**4) + 40*sqrt(-a**2*x**2 + 1
)/(27*a**4), Ne(a, 0)), (0, True))

________________________________________________________________________________________

Giac [A]  time = 1.227, size = 138, normalized size = 1.1 \begin{align*} \frac{{\left ({\left (-a^{2} x^{2} + 1\right )}^{\frac{3}{2}} - 3 \, \sqrt{-a^{2} x^{2} + 1}\right )} \arcsin \left (a x\right )^{2}}{3 \, a^{4}} + \frac{2 \,{\left (3 \,{\left (a^{2} x^{2} - 1\right )} x \arcsin \left (a x\right ) + 21 \, x \arcsin \left (a x\right ) - \frac{{\left (-a^{2} x^{2} + 1\right )}^{\frac{3}{2}}}{a} + \frac{21 \, \sqrt{-a^{2} x^{2} + 1}}{a}\right )}}{27 \, a^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*arcsin(a*x)^2/(-a^2*x^2+1)^(1/2),x, algorithm="giac")

[Out]

1/3*((-a^2*x^2 + 1)^(3/2) - 3*sqrt(-a^2*x^2 + 1))*arcsin(a*x)^2/a^4 + 2/27*(3*(a^2*x^2 - 1)*x*arcsin(a*x) + 21
*x*arcsin(a*x) - (-a^2*x^2 + 1)^(3/2)/a + 21*sqrt(-a^2*x^2 + 1)/a)/a^3